
Anybody can learn to code! Programming a
computer is much easier than you think. Come

with us and we’ll help you get started

Sean
McManus

Author/co-author
of inspiring
coding books
including Mission
Python, Cool
Scratch Projects
in Easy Steps, and
Raspberry Pi For
Dummies. Get
free chapters at
Sean’s website.

sean.co.uk

A
U

T
H

O
R

FEATURE

Learn to code26 magpi.cc

WITH SCRATCH & PYTHON

LEARN TOLEARN TOLEARN TO

http://sean.co.uk
http://magpi.cc
http://magpi.cc

L earning to code can be one of the most profound
skills you will ever develop. With code, you can
control a computer. You can get it to do things for you,

and also control gizmos and other computers. Kick back and
let your computer do all the work.

Sure, that’s cool. But coding is about more than that. It’s
about understanding how computers work, and getting a

better understanding of how technology – and the modern
world – works. It’s about breaking down problems into little

bits and solving them. It’s an amazingly helpful life skill.
That’s why it’s profound.

On a more practical level, knowing just a little code can
lead to better job opportunities; a little more can open up

well-paid and fun jobs. It’s an impressive skill to put on
your CV and anybody can do it. Anybody.

Coding is a lot easier than you think. And putting the
power of computing and digital making into the hands of

people is what Raspberry Pi is all about.
The Raspberry Pi is ‘the little computer that could’,

and you’re ‘the person who can’. Don’t worry: you’ve
got this. We can help you get started.

 The Raspberry Pi is ‘the little
computer that could’, and you’re
‘the person who can’

FEATURE

27magpi.ccLearn to code

p31 CODE A
QUIZ GAME
WITH PYTHON

p35 BUILD AN
ELECTRONIC
GAME

p28 START
CODING WITH
SCRATCH

p34 MAKE AN
LED TORCH
WITH PYTHON

http://magpi.cc
http://magpi.cc

01 Start Scratch 2
Open Scratch by clicking on the Raspberry Pi

Menu icon and choosing Programming > Scratch 2.
You will see Scratch interface and a single
character in the top-left, known as ‘Scratch Cat’.

To control the Scratch Cat, we’re going to drag
blocks from the Blocks Palette into the Scripts Area
and join them together.

Start by clicking on Events and drag the
when clicked block to the Scripts Area.

Now click on Motion and drag a
point in direction 90 block and connect it the to
the bottom of the when clicked block.

Click on the fields in the blocks to edit the
numbers. Click on ‘90’ and change it to ‘0’.

Now click and drag the blocks below, and edit
their numbers, to build a script for Scratch Cat.
This script runs when you click the green flag
above the Stage. It sets the cat’s movement
direction to up, puts the cat in the top-left corner
of the Stage, and sets it to always face left or right.
Then, the movement blocks inside the forever
bracket keep the cat moving all the time.

Click the green flag to run your script. Scratch
Cat will move to the left side and bounce up
and down.

Start coding
with Scratch

Understanding
coordinates

The Scratch screen is divided into units called
steps. When the cat moves 10 steps, it only makes
one movement, but that stride shifts it 10 positions
across the Stage. The middle of the Stage is at
x=0, y=0. The x-axis (left to right) runs from -240
to +240, and the y-axis (bottom to top) runs from
-180 to +180. The directions the sprite can move
in are numbered 0 (up), 90 (right), 180 or -180
(down), and -90 (left). You can use numbers in
between those numbers too, so -45 would be a
north-west direction. Why not try starting a new
project and joining some Motion blocks together
to experiment? You can run a script or a block by
clicking it, or use the when flag clicked block as
we did in our program here.

Beginners, arise! It’s time to take your first steps with
coding, as we introduce you to Scratch and Python, with

a sprinkling of twinkling LEDs! By Sean McManus

B eing able to write programs is like a superpower:
it means you can get your computer to do
whatever you want. Join us as we show you

how to make your first programs using Scratch and
Python. You’ll also see how easy it is to build simple

electronics projects.
A program is just a set of instructions. In Scratch,

the instructions are written with visual blocks that
lock together to make a sequence called a script.

The blocks are colour-coded to help you find
them. To find the brown blocks, for example,

click the brown Events button above the
Blocks Palette.

Scratch makes coding easier, because you
don’t need to worry about the spelling of

commands. And everything is laid out in
front of you.

You’ll Need

> � �Scratch 2

> � �Raspbian with
Desktop and
Recommended
Software

> � �A good sense
of timing!

FEATURE

Learn to code28 magpi.cc

http://magpi.cc
http://magpi.cc

02 Send a broadcast
The moving objects in Scratch, including

the cat, are called sprites. One sprite can send a
message to all the other sprites using a broadcast.
You can’t hear it or see it on screen, but sprites
can listen for it, and then start a script when they
receive it. We’ll use a broadcast to make the cat
throw some bananas. Click the brown Events
button, and add the two blocks below to the Scripts
Area. This new script doesn’t join to the existing
script (from Step 1) – it sits on its own in the same
Scripts Area.

You need to change ‘message1’ to ‘fire’. Click
the down arrow next to ‘message1’ in the broadcast
block and choose New Message. Enter the message
name ‘fire’ and click OK.

As the program is running, when you tap SPACE,
the broadcast message is sent silently. Crafty!

03 Add aerodynamic bananas
Scratch enables you to get results fast

because it includes its own images and sounds.
Click the first New Sprite button above the Sprite
List (it will display ‘Choose sprite from library’ as
you hover over it).

Click the Bananas sprite to add it to the Sprite
List. Notice that its Scripts Area is blank. We’ll
give Bananas two scripts. The first one sets the
sprite’s size and makes it invisible when you click
the green flag. The second runs when the cat
broadcasts its fire message. Click and drag the
blocks below to the Scripts Area.

When adding the glide block, drag the
y position block inside the round ‘y:’ field to
replace the ‘10’ default value.

The ‘fire’ broadcast makes the bananas jump
to the cat (use the go to mouse-pointer block,
and choose Cat1 in its menu). Then it makes the
bananas visible, glides them across the screen, and
hides them again.

Click the green flag, and tap SPACE to test.
Scratch Cat now throws bananas.

Top Tip
Get the
right sprite

Make sure you’re
adding scripts to
the correct sprite.
You can select a
sprite by clicking
it in the Sprite List.

01

02

03

04

01 	 �Blocks Palette: Find
instruction blocks here

02 	� Scripts Area: Drag and
drop blocks here to build
your script (program)

03 	� Buttons: Click to view
different types of blocks in
the Blocks Palette below

04 	� Sprite List: Select and
manage sprites here

FEATURE

Learn to code 29magpi.cc

http://magpi.cc
http://magpi.cc

04 Add monkey magic
Variables are names used to remember

information, such as a score, that might change.
Click the Data button and click Make a Variable.
Give it the name ‘score’, select For All Sprites, and
click OK. Let’s add a moving target for the cat to try
to hit. Click the ‘Choose sprite from library’ icon
and choose the Monkey2. Select Monkey2 in the
Sprites area and give it the script above.

The monkey’s script sets the new score variable
to 0 when the game starts, then makes the monkey
move up and down. Each sprite can have more
than one image: the Next Costume block cycles

through them, creating an animation.

05 Add collision detection
Our monkey will react when it’s

struck by a bunch of bananas. To do that,
we use an if block; this checks whether

something is true – in this case, whether the
monkey is touching the bananas. If so, the blocks
inside its bracket are run. Here, those blocks
hide the monkey, add 1 to the score, and wait one
second before showing the monkey again.

This whole code chunk goes inside the monkey’s
forever bracket – below the next costume block
– so the program keeps checking whether the
monkey has been hit.

06 Finishing touches
Let’s add a simple timer to stop the sprites

moving after 30 seconds, and make the monkey
react when it sees incoming bananas. Add these
two scripts to the monkey sprite. Now the game is
complete, why not try experimenting with it? Can
you make the monkey move erratically instead of
disappearing when it’s hit? Can you change the
sprites’ positions and directions to turn the game
sideways, making it more like Space Invaders?
What about adding more targets to hit? One of the
best ways to learn to code is by experimenting with
existing programs.

	� These last two
scripts add a
timer and make
the monkey
react when it
sees bananas

Where next?
We’re huge fans of Scratch at The MagPi, so
check out our past issues online for more Scratch
tutorials. Issue 5 includes a memory game, like
Simple Brian. Issue 34 has a multiple-choice quiz,
and our 2018 Annual included an introduction
to electronics and Scratch. See issue 76 for
a roundup of resources to help you learn
Scratch, and don’t forget there’s a Scratch book
in The MagPi’s own Essentials series
(magpi.cc/learnscratch) and the Code Club Book

of Scratch (magpi.cc/ccbook1).

30 magpi.cc Learn to code

Top Tip
Blocks inside
blocks

Some blocks can
go inside other
blocks. In Step 3,
the y position
block keeps the
sprite’s y position
the same while
its x position
changes.

FEATURE

http://magpi.cc/learnscratch
http://magpi.cc/ccbook1
http://magpi.cc
http://magpi.cc

Code a quiz game
with Python
Make your own text quiz game that mangles famous
phrases using the Python language

Python, strings are surrounded by double quotes
to show where they start and end. The whole list is
enclosed in square brackets, and there are commas
between the list items. Type in the code below, save
your program, and then click Run. If it worked, you
should see no error messages in the Shell window.

import random

questions = ["As You Like It",
 "The Tempest", "Measure for Measure",
 "Much Ado About Nothing",
 "The Comedy of Errors",
 "King Lear", "Cymbeline",
 "Hamlet", "Coriolanus", "Othello",
 "Love's Labour's Lost",
 "King John", "Julius Caesar",
 "Edward III"]

M any people progress from Scratch
to Python, a programming language
that is powerful, easy to get started

with, and much easier to read and write than
other languages.

We’re going to make a simple quiz question
generator that strips the vowels and shuffles the
spaces in a phrase. The player has to work out what
that phrase is.

We’ll be using Thonny, which provides a
friendly single-screen environment for running
and testing Python code. Like Scratch, the Thonny
IDE (integrated development environment) comes
pre-installed in the Raspbian with Desktop and
Recommended Software operating system.

01 Create a list of questions
As well as variables, Python has lists, which

can store multiple pieces of information. Our
program creates a list called questions. Each item
in the list is a piece of text, known as a string. In

You’ll Need

> � �Raspbian with
Desktop and
Recommended
Software

> � �Thonny

01

02

03

Getting
indentation right

Python uses indentation to show which
instructions belong to a function, an if statement,
or a repeating section. As you can see in Step 3
(overleaf), you can have multiple levels of
indentation. The last line belongs to the if
instruction, and that is repeated inside the for
loop. The best way to get the indentation right is
to remember the colon at the end of the previous
line. Then, Thonny will add the indentation for you
automatically. If you forget, use four spaces at the
start of the line to insert the indentation. You’ll still
need to fix that missing colon, though!

01 	 �Type in and edit
your program
code here

02 	� Enter direct
commands and
see program input
in the Shell here

03 	� Keep track of the
data your program
is processing here

FEATURE

Learn to code 31magpi.cc

http://magpi.cc
http://magpi.cc

Debugging in Thonny
You can step through the program slowly to see
what it’s doing, which can help you to find errors.
Click the Debug button in Thonny, then click the
Over button to run through each instruction in turn.
Watch the Variables pane on the right to see how
the lists and strings change at each stage of the
program. Thonny also helps you avoid errors by
highlighting unclosed brackets and double quotes.

02 Pick a random question
Python includes modules of prewritten

code you can use, such as the random module
we imported in Step 1. The first new instruction
creates a new variable called chosen_phrase and
puts a randomly chosen question into it. The
second line converts the chosen_phrase to upper
case. Run the program a few times and look at the
value of chosen_phrase in the Variables pane. You
should see different names come up, although
names can also repeat.

Add a line of space between the code in Step 1
and add the following code:

chosen_phrase = random.choice(questions)
chosen_phrase = chosen_phrase.upper()

03 Strip the vowels and spaces
Let’s create a new list of forbidden

characters, chiefly the vowels, but also the
space and the apostrophe. That last list item in
the vowels list is an apostrophe inside double
quotes. We create an empty string variable, called
puzzle. We’re going to go through each letter in
the phrase, check whether it’s in the vowels list,
and if not, add it to the end of the puzzle string.
The for instruction sets up a repeating piece

of code, called a loop. The instructions that
should be repeated are indented from left. Each

time around the loop, the variable letter is
set to contain the next character from the
chosen_phrase string. The if instruction

checks whether the letter is in the vowels

list. If it is not, the letter is added to the end of
puzzle. The += means ‘add at the end’. Run the
program, then test it’s working by looking at the
contents of puzzle in the Variables panel. It should
contain no vowels, spaces, or apostrophes.

Add the following code to the program:

vowels = ["A", "E", "I", "O", "U", " ", "'"]
puzzle = ""

for letter in chosen_phrase:
 if not letter in vowels:
 puzzle += letter

04 Insert random spaces
Each character in the string can be referred

to by its position number, starting at 0. The number
is called an index, and you put it in square brackets
after the string. Try this in the Shell (click on the
line starting with ‘>>>’). Instructions in the Shell
are carried out immediately. Enter the following:

print("Hello"[1])

You get ‘e’ back (because the first character is
number 0). You can get a chunk too (called a slice)
by giving a start and end index, like this:

print("Hello"[1:4])

It gives you ‘ell’ because the last index position
(4) is left out. We’ll create a new list, called
puzzle_with_spaces, by adding chunks of the
puzzle string and a space until there’s no puzzle
string left. The while loop repeats the indented

instructions below as long as the length of puzzle
is more than 0. The group_length variable is

given a random whole number (integer) from
1 to 5. Then that many letters are added

to puzzle_with_spaces from the front of
puzzle, plus a space. Those characters are

Where next?
You can find Python code to dissect in most issues
of The MagPi. Issue 53 (magpi.cc/53) includes
a more in-depth beginner’s guide to Python,
covering variables, looping with while and for,
branching with if, and functions, which we’ll
cover in this issue shortly. Issue 54 (magpi.cc/53)
introduces object-oriented programming in both
Scratch and Python. Issue 73 (magpi.cc/73)
includes a roundup of Python books and online
resources. There is a book in our Essentials
series too, called Make Games with Python
(magpi.cc/gameswithpython).

Top Tip
Pesky
punctuation!

Take care to
add the colons
at the end of
the if and else
instructions. The
code won’t work
without them.

FEATURE

Learn to code32 magpi.cc

http://magpi.cc/53
http://magpi.cc/53
http://magpi.cc/73
http://magpi.cc/gameswithpython
http://magpi.cc
http://magpi.cc

import random

questions = ["As You Like It", "The Tempest",
"Measure for Measure", "Much Ado About Nothing",
"The Comedy of Errors", "King Lear", "Cymbeline",
"Hamlet", "Coriolanus", "Othello","Love's Labour's Lost",
"King John", "Julius Caesar", "Edward III"]

chosen_phrase = random.choice(questions)
chosen_phrase = chosen_phrase.upper()

vowels = ["A", "E", "I", "O", "U", " ", "'"]
puzzle = ""

for letter in chosen_phrase:
 if not letter in vowels:
 puzzle += letter

puzzle_with_spaces = ""

while len(puzzle) > 0:
 group_length = random.randint(1,5)
 puzzle_with_spaces += puzzle[:group_length] + " "
 puzzle = puzzle[group_length:]

print(puzzle_with_spaces)
guess = input("What is your guess? ")
guess = guess.upper()

if guess == chosen_phrase:
 print("That's correct!")
else:
 print("No. The answer is ", chosen_phrase)

quiz_game.py

001.
002.
003.

004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.

> Language: Python magpi.cc/github82

DOWNLOAD
THE FULL CODE:

then cut off the front of puzzle. The slicing here
only uses one number, so the other one is assumed
to be the start or end of the string.

Add this code to your program:

 puzzle_with_spaces = ""

 while len(puzzle) > 0:
 group_length = random.randint(1,5)
 puzzle_with_spaces +=
puzzle[:group_length] + " "
 puzzle = puzzle[group_length:]

05 Add collision detection
It prints the puzzle_with_spaces. It then

uses the input() function to ask you what your
guess is. Your answer goes into the guess variable,
and is then converted to upper case to make sure
it matches the correct answer if it’s right. The
if instruction checks whether guess is the same
as chosen_phrase. If so, it prints one message.
Otherwise, the instruction indented under else
runs, to tell you the right answer. In Python, one =
is used to put a value into a variable, but two (==)
are used to compare items in an if instruction.

Add this code to the end of the program:

print(puzzle_with_spaces)
guess = input("What is your guess? ")
guess = guess.upper()

if guess == chosen_phrase:
 print("That's correct!")
else:
 print("No. The answer is ", chosen_phrase)

Click the Run button and hopefully you’ll see some
letters in the Shell and ‘What is your guess?’ Enter
an answer and you’ll see ‘That’s correct!’ or ‘No.
The answer is’ and the correct response.

If you’ve typed the code out by hand, it’s likely
that you’ll see an error message. Go through your
code line-by-line and compare it to the full code
in quiz_game.py.

 Python is easy to get started
with and much easier to read and
write than other languages

FEATURE

Learn to code 33magpi.cc

http://magpi.cc/github82
http://magpi.cc
http://magpi.cc

the yellow wires in the diagram. The first button
connects to the GPIO 2 pin on one side, and to
the ground rail on the other side. We’ll connect
the latter to a ground pin on the Pi, so anything
plugged in that row of holes connects to ground.

02 Connect your first LED
Always use a resistor when you connect an

LED to your Pi, to prevent the LED drawing too
much current and getting damaged. Both the LED
and the resistor plug straight into your breadboard.
The current flows from GPIO 18, through the
resistor, through the LED (lighting it up), to the
breadboard’s ground rail. LEDs only work one way
around: the short leg is the negative side, which
you connect to ground. The LED won’t light up yet.

03 Make an LED torch
You’ve made your first circuit! Let’s test it

by coding a torch. The torch.py code shows how to
use an LED and a button. It imports the relevant
parts of the GPIO Zero library, then sets up an LED
called light, connected to GPIO pin 18. The button
on pin 2 is set up with the name button. The while
True loop checks whether the button is pressed
forever. If so, the light is turned on. Otherwise, it’s
turned off. Pay attention to the capitalisation of
LED and Button when setting them up.

04 Add the other buttons and LEDs
Take a look at Figure 2 (overleaf). It looks

complex at first, but the other three buttons
and LEDs are connected in the same way as

Build an LED torch
and electronic game

Where next?
The online documentation for GPIO Zero
(magpi.cc/DPyuYc) provides more code
examples, including a button-controlled camera,
an LED bar graph, and a motion sensor. We
surveyed useful resources for basic electronics
in issue 77, and there’s a book in our Essentials
series called Simple Electronics with GPIO Zero
(magpi.cc/gpio-zero).

Discover how easy it can be to get lights blinking and buttons clicking using
GPIO Zero and use your new-found skills to build an electronic game

O ne of the best things about the Raspberry Pi is
that you can easily hook up your own electronics
projects. Using some electronics components and

the GPIO Zero library, you can program a puzzle game
where you have to repeat a sequence of lights that

gets longer each turn. You might remember a similar
electronic game from your childhood, but we call ours

Simple Brian. In issue 77 (magpi.cc/77) we showed
you how to use Python code to play the game on

screen. This issue, we’ll show you how to make the
electronic game itself, building on your new-found

Python skills from Missing Vowels.
First, we’re going to show you how to build a

torch by lighting up LEDs. Let’s get going.

01 Connect your first button
The torch circuit diagram (Figure 1)

shows an LED light connected to the GPIO
pins of a Raspberry Pi using a breadboard

(see magpi.cc/breadboard for a primer
on using this piece of equipment).

Press the button into the board,
then use jumper wires to form a

circuit with your Pi, as shown by

You’ll Need

> � �4 × LEDs (ideally
different colours)

> � �4 × 330 Ω resistors

> � �4 × 6 mm Tactile
momentary
button switches

> � �400-point
breadboard

> � �9 × Male-to-female
jumper cables

> � �8 × Male-to-male
jumper cables

> � �PiBow case with
Breadboard Base
pimoroni.com

FEATURE

Learn to code34 magpi.cc

http://torch.py
http://magpi.cc/DPyuYc
http://magpi.cc/gpio-zero
http://magpi.cc/77
http://magpi.cc/breadboard
http://pimoroni.com
http://magpi.cc
http://magpi.cc

the first ones, just using different pins on the Pi.
All the buttons (yellow wires) connect to the Pi’s
inner row of pins, and the LEDs (blue wires) to the
outermost row. We’ve separated the components
in this diagram a bit so it’s easier to see how to
wire it up, but try to line up your LEDs and buttons
on the breadboard so it’s easier to play the game.

05 Test them all
Now you can test these LEDs and buttons

too. Modify your torch code to use LED(23) and
Button(3) and then run the program to test the
next light switch works. Then check LED(24) and
Button(4), and finally LED(25) and Button(17). The
buttons should be next to the LED they illuminate.

06 Build an electronic game
Now we’re ready to start making the Simple

Brian game (see brian.py). This starts by setting up
a list of buttons, and a list of their associated LEDs.
It also creates an empty list called sequence, which
we’ll use for the sequence of lights the player must
repeat. With each turn, it’ll get longer.

07 Add functions
Functions enable you to bundle up a set of

instructions so you can reuse them. You have to
define a function before you can use it. To define
a function, you use def, followed by the function
name, (), and a colon. The brackets are there to hold
any info you’re sending to the function, but we don’t
need to send any so they’re empty. You can tell
which instructions belong to a function, as they’re
indented. The lights_on() and lights_off()
functions use a loop to go through all the items in

Torch demo
from gpiozero import Button, LED

light = LED(18)
button = Button(2)

while True:
 if button.is_pressed:
 light.on()
 else:
 light.off()

torch.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.

> Language: Python magpi.cc/github82

DOWNLOAD
THE FULL CODE:

01

02

03

	� The finished game, with all the lights lit up for testing

Figure 1

01 	 �Count the pins to see where to connect
your wires

02 	� The breadboard makes it easy to plug in
components and quickly set up circuits

03 	� Using this simple circuit (with an LED and a
button), you can make a push-button torch

FEATURE

Learn to code 35magpi.cc

http://brian.py
http://magpi.cc/github82
http://magpi.cc
http://magpi.cc

the leds list, putting them into led, then turning
led on or off. The flash_all() function shows how
to repeat a set number of times, in this case 3. The
loop turns the lights on and off, with a 0.25 second
pause after each change using sleep(0.25).

08 Lights test flash all
After you’ve entered the functions (down

to line 23), you can test the program by adding
flash_all() as the last line and then running it.
All the lights should flash together, three times.
Delete that test line before you carry on. In line
25, the program runs the lights_off() function to
ensure the lights are all off before the game begins.

09 Add to the sequence
Now we enter the main game loop, under

while True (line 27). Everything from here on in is
indented to show it belongs to that loop, repeating
endlessly. The game sequence starts as an empty
list, so the first thing we do is to add an LED. We
pick a random LED using random.choice() and
add it to the end of the sequence list using the
append() list method. A list method is a built-in
Python function that you can apply to a list. Other
methods are available to insert and remove items,
and sort the list, among other things.

10 Play the list sequence
The lights all flash three times using the

flash_all() function before the sequence begins,
to show this is the start of the sequence. Then a
loop is used that takes each LED from the sequence
list, and puts it into light, in turn. It’s turned on,
there’s a short pause, then it’s turned off. There’s
another short pause so it’s obvious there are
multiple flashes of the same light if it repeats in the
sequence. In round one, there’s only one light in
the sequence list, but as the game progresses, this
loop will get longer. You can run the program at this
point to see the light sequence gradually extend,
without the player getting a chance to guess.

11 Get the player’s guess
Getting the player’s guess uses a similar

loop to the one that plays the lights sequence. It

	� On a breadboard, the rails along the
edges are connected in a long line,
and the short lines of dots in the
middle are connected to each other

01

02

03

Figure 2

01 	 �Just like its famous namesake, our Simple Brian
game features four LED lights that flash up a
sequence for you to memorise

02 	�� The circuit also contains four buttons. We’ll
push these to repeat the sequence of lights that
we’ve memorised

03 	� At the heart of our project is the Raspberry Pi.
The buttons and lights are connected to our
computer with wires. Code in the computer
flashes the lights and keeps an eye on the
buttons we’re pushing

FEATURE

Learn to code36 magpi.cc

http://magpi.cc
http://magpi.cc

from gpiozero import Button, LED
from time import sleep
import random

buttons = [Button(2), Button(3), Button(4),
Button(17)]
leds = [LED(18), LED(23), LED(24), LED(25)]

sequence = []

def lights_on():
 for led in leds:
 led.on()

def lights_off():
 for led in leds:
 led.off()

def flash_all():
 for _ in range(3):
 lights_on()
 sleep(0.25)
 lights_off()
 sleep(0.25)

lights_off()

while True:
Add a new light to the end of the sequence
 new_light = random.choice(leds)
 sequence.append(new_light)

Flash all before playback
 flash_all()

play the sequence
 for light in sequence:
 light.on()
 sleep(0.5)
 light.off()
 sleep(0.25)

get the player's input
 for light in sequence:
 guess = None
 while guess == None:
 for button in buttons:
 if button.is_pressed:
 # convert button push to list
index number
 guess = buttons.index(button)

 if leds[guess] == light:
 light.on()
 sleep(0.5)
 light.off()
 sleep(0.25)
 else:
 print("You failed at level ",
len(sequence))
 for _ in range(10):
 light.on()
 sleep(0.15)
 light.off()
 sleep(0.15)
 sequence = []
 break

brian.py

001.
002.
003.
004.
005.

006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.

> Language: Python magpi.cc/github82

DOWNLOAD
THE FULL CODE:

034.
035.
036.
037.
038.
039.
040.
041.
042.
043.
044.
045.
046.
047.
048.

049.
050.
051.
052.
053.
054.
055.
056.
057.

058.
059.
060.
061.
062.
063.
064.

works its way through the sequence list, accepts a
guess, and checks whether it matches the current
item in the sequence. There are three loops inside
each other here. The program sets the guess
variable to None, a special value in Python. Then
a while loop keeps repeating until the guess
variable changes. Inside that, a loop goes through
the buttons list, checking each one in turn to see
whether it’s pressed. If so, the guess variable is
changed, ending the while loop. The program
converts the button the player pressed into its
index number in the list and puts that into the
guess variable. That way, we can match the button
to its LED, which will be at the same position in the
leds list. You can find the position of an item in a
list using listname.index(item).

12 Check the player’s guess
We’re still inside the loop going through

the sequence here, as the indentation of line 51
shows. Now we check whether the light the player
guessed (leds[guess]) matches the current light in
the sequence. If so, the light is turned on and then
off again. If the two lights don’t match, the player
made a mistake. We can tell how long a list is using
len(listname). We use the length of the sequence
list to tell the player which level they got to. The
correct light is then flashed quickly ten times. The
sequence list is emptied to start a new game, and the
break instruction breaks out of the for loop that’s
getting player input. When the player has either
guessed all the lights, or failed, the game repeats
from line 28, adding a new light to the sequence.

Top Tip
Underscoring
repetition

The line for _ in
range(3) repeats
the indented
instructions three
times. The _
shows we don’t
need to use the
loop number.
Often, you’d
use a variable
name instead.

FEATURE

Learn to code 37magpi.cc

http://led.on
http://light.on
http://light.on
http://light.on
http://magpi.cc/github82
http://magpi.cc
http://magpi.cc

	001_MagPi82_COVER_v5
	002_MagPi#82_Cana-kit-001
	003_MagPi#82_WELCOME_NK_PK_RZ_LH_PK2_LH
	004-005_Magpi#82_CONTENTS_SR_NK_PK_RZ2_LH
	006-007_Magpi#82_NEWS_Stamps_NK_PK1_SR_PK2_RZ_LH_SR2_LH
	008_Magpi#82_NEWS_Sense Board_NK_PK_RZ_LH
	009_MagPi#82_AD_345_PK_RZ_SR_LH
	010-013_Magpi#82_SHOWCASE_Yuri3_NK_PK_RZ_LH
	014-015_Magpi#82_SHOWCASE_Arm_PK_NK_RZ_LH
	016-017_Magpi#82_SHOWCASE_Cat Sprinkler_PK_NK_RZ_LH
	018-019_Magpi#82_SHOWCASE_Password_PK_NK_RZ_LH
	020-021_Magpi#82_SHOWCASE_PiVizu_PK_NK_RZ_LH
	022-023_Magpi#82_SHOWCASE_Hologram_PK_NK_RZ_LH
	024-025_MagPi#82_SUBS_PK_NK_RZ_LH
	026-037_Magpi#82_FEATURE_Learn to Code_PK1_SR_PK2_NK_PK3_RZ_LH_PK4_SR2_LH
	038-041_Magpi#82_TUTORIAL_Keyring_PK1_SR_PK2_NK_RZ_LH
	042-045_Magpi#82_TUTORIAL_Display Lights_PK1_SR_PK2_NK_RZ_LH
	046-052_Magpi#82_TUTORIAL_Lego Boost_PK_NK_SR_RZ2_LH
	053_MagPi#82_AD_UrsaLeo_PK_RZ_LH
	054-057_Magpi#82_TUTORIAL_Marauders Map_PK_NK_RZ_LH
	058-063_Magpi#82_TUTORIAL_GUI_PK1_SR_PK2_NK_RZ_LH
	064-065_MagPi#82_AD_Projects Book_PK_RZ_LH
	066-075_Magpi#82_FEATURE_Railways_NK_PK_RZ_SR_LH
	073_MagPi#82_AD_CDP_PK_RZ_LH
	074_MagPi#82_AD_Vitros_PK_RZ_LH
	076-077_Magpi#82_REVIEW_PiBug_PK_NK_RZ_LH
	078_Magpi#82_REVIEW_LibreElec_NK_PK_RZ_LH
	079_MagPi#82_AD_Hello World_PK_RZ_LH
	080-081_Magpi#82_Review_Top10_Health_adons_NK_PK_RZ_LH
	082-083_Magpi#82_RESOURCES_AI_NK_PK_RZ_LH
	084-085_Magpi#82_INTERVIEW_Nicole_NK_PK_RZ_LH
	086-089_MagPi#82_THIS MONTH_NK_PK_RZ_LH
	090-091_MagPi#82_EVENTS_NK_PK_RZ_LH
	092-093_Magpi#82_LETTERS_NK_PK_RZ_LH_PK2_LH
	094_MagPi#82_AD_Hackspace_PK_RZ_LH
	095_Magpi#82_COMPETITION_PK_NK_RZ_LH
	096_MagPi#82_AD_Wireframe_PK_RZ_LH
	097_MagPi#82_NEXT MONTH_NK_PK_RZ_LH_SR_LH
	098_Magpi#82_FINAL WORD_NK_PK_RZ_LH
	099_MPi#82_Beginner's-Guide-ad_MK
	100_MagPi#82_Cana-kit-002

