
Prepare to build an ever-evolving artwork using Python
code that merges images endlessly. Start by discovering
how to bulk process images with ImageMagick

B rian Eno’s 77 Million Paintings is a video
installation that merges slides together to
create endless variations of abstract art. I

created my own version, called ArtEvolver, which
runs on a Raspberry Pi and uses a Pimoroni 8-inch
LCD screen. To work well, it needs a large library
of images. This issue, you’ll see how to curate
them and prepare them using ImageMagick’s
(imagemagick.org) powerful batch processing.
You’ll learn how a single command can resize,
crop, or transform hundreds of pictures. There’s a
short Bash script to automate image rotation, and
we’ll take a tour through some of ImageMagick’s
special effects.

01 Collect your images
In Add/Remove Software (Raspberry Pi

menu > Preferences), search for ‘ImageMagick’
and select the ‘image manipulation programs
– binaries’ option. Click Apply to install the
software. Alternatively, open a terminal window
and enter:

sudo apt update
sudo apt install imagemagick -y

In this tutorial, you will make ArtEvolver unique
by curating the images that you feed into it. Scour

Sean
McManus

Author of Mission
Python, Scratch
Programming in
Easy Steps, and
Raspberry Pi For
Dummies (with
Mike Cook). Get
free chapters at
Sean’s website.

sean.co.uk

W
R

IT
ER

ArtEvolver:
batch-convert
images with
ImageMagick

You’ll Need

> � �Raspberry Pi

> � �Raspberry Pi OS

> � �Some images

> � �ImageMagick
imagemagick.org

ArtEvolver blends
the robot with other
pictures, constantly
changing the
composite image

ImageMagick’s edge
effect transforms this
robot photograph
before putting it
into ArtEvolver

Pa
rt

 0
1

your personal photo archive and pick images that
resonate. You can bulk these up with free images
from sites such as unsplash.com, pixabay.com,
and pexels.com. Your images will be layered in
unpredictable ways, so search for colours, textures,
and shapes that could be part of an abstract
artwork. Textures like paper, stone, and paint
make the art feel more organic; illustrations often
work well. We’ve collected about 1000 images for
this version, but you only really need a hundred
or so. Put all your images (and nothing else) in a
folder, and keep a separate, safe copy as a backup.

TUTORIAL

ArtEvolver: batch-convert images with ImageMagick44 magpi.cc

02 Experiment with the desktop app
ImageMagick installs into a desktop menu’s

Graphics folder. Start ImageMagick and click the
splash screen. The splash screen is actually an
image you can edit, but you’ll get better results
by loading a photo using the File menu. Try the
various options in the Effects and F/X menus.
These include emboss, sharpen, blur, sepia tone,
and oil paint. The Enhance menu has options for
changing the colour and tone of your image. You’ll
find the option to resize your image in the View
menu. The Image Edit menu enables you to draw.
You choose an element such as a filled circle, a fill
colour, and ‘stipple.’ The stipple is a pattern for the
fill, such as brickwork, waves, or fish scales. Drag
on the canvas to draw your shape, but be warned
that it can be slow on high-resolution images.

03 First steps with the terminal
Go into your images folder on the desktop

and press F4 to open a terminal window in that
directory. There are two main ImageMagick
commands: convert and mogrify. Convert is good
for changing individual images or experimenting
with effects. For example, you can mirror an image
vertically with the -flip operation like this:

convert image_file.jpg -flip new_image_file.
jpg

Use -flop to mirror it horizontally. With
mogrify, you can process many images at the same
time, which is a huge plus over the desktop app.
You use wild cards, where * represents every file,
and *.jpg would be every file ending with .jpg.
Here’s an example:

mogrify -flip *

Beware: mogrify overwrites your image files.

Top Tip
View progress
in the desktop

Use ImageMagick’s
display image_
file.jpg
command to see
an image. It’s
easier to use the
Image Viewer in
the desktop to
quickly review
image batches.

	 �The posterize effect
(here used with a
value of 4) gives your
image the style of a
vintage PC palette

	� You can use ImageMagick from the desktop, but the command
line enables powerful batch processing capabilities

04 Make all your images
landscape format

We are assuming you want to display your artwork
on a landscape format screen (wider than it is
tall). It’s OK to have some portrait shape images in
ArtEvolver, but it works best if most images fill the
screen. With abstract images, it doesn’t matter if
you rotate them. The landscapify.sh listing shows
a Bash script that rotates all the portrait images
in a folder by 90 degrees. You can download it at
magpi.cc/artevolver or create it using Text editor.
Save it in the same folder as your images, with
the name landscapify.sh. Open the folder in the
terminal and enter:

chmod +x landscapify.sh

This will make the script executable. Then
run it with ./landscapify.sh. The script uses
ImageMagick’s identify command to get the
dimensions of each image, and its convert
command to rotate any pictures where the height
is greater than (-gt) the width. Unchanged
versions of the rotated images are saved in the new
original_images subfolder.

05 Combining images
For some images, you could instead make

a landscape file by joining two or more portrait
images, side by side. The montage command
enables you to join images together. You list the
images you want to combine and specify the layout
with the -tile parameter. We are using 2×1 to place
the images side by side. You could create a 4×2 grid
of images as well, and give the command eight
files to combine. To remove any gaps between the
images, you use the -geometry parameter with two
zero values. Try this (replacing the ‘image_file.jpg’
names with your image files):

TUTORIAL

ArtEvolver: batch-convert images with ImageMagick 45magpi.cc

montage image_file1.jpg image_file2.jpg
-tile 2x1 -geometry +0+0 new_file.jpg

This will create a new_file.jpg file from the two
images you supply.

06 Resize your images
The Pimoroni display we are using has a

resolution of 1024×768 pixels, but camera images
are typically much larger. To resize all the images
in one go, use ImageMagick’s mogrify command,
like this:

mogrify -resize 1024x768^ *

The ^ symbol after the resolution sets the images
to fill the screen, with some spilling over. If you
leave the ^ off, the resized images will fit the
screen. In that case, you see the entire image,
but the empty spaces at the top and bottom
won’t work well in our final project. Beware: this
command might take a while, and it will overwrite
your original images.

07 Crop your images
For typical landscape camera images, any

overmatter will be on the width of the image. Let’s
use mogrify to crop it off. The -gravity parameter
specifies which part of the image you want to keep,
using compass points. To keep the left and trim
the right, use west, for example. Set the gravity to
center to trim both sides equally. The best-looking
crop depends on the image. I manually sorted
my images into three folders for cropping left,
right, and centre, and then ran a version of this
command in each folder.

mogrify -gravity center -crop 1024x768+0+0 *

If you have images with unusual dimensions,
you may need to crop north or south instead. (You
can also use a north crop to extract the top of a
portrait-shaped image before you resize it.)

08 Convert to greyscale
Some photos will blend better with other

images if you convert them to greyscale. I use
convert for changes like this so I can keep and
compare the results of different effects. You can
convert an image using:

convert -colorspace Gray image_file.jpg
new_image_file.jpg

You can convert to sepia (a browned-out photo
style) using -sepia-tone, where a higher number
makes the image darker:

convert -sepia-tone 75% image_file.jpg new_
image_file.jpg

09 Adjust the colours
Swapping colours often makes striking

images. Use -negate to switch black and white,
and swap complementary colours (e.g. blue and
yellow). Try this:

convert -negate image_file.jpg new_image_
file.jpg

You can also try negating only the red, green, or
blue channel:

	 �The implode effect,
here used with a
value of 0.5, distorts
the image

	� Charcoal images like
this can work well
when blended with
coloured textures by
ArtEvolver. The line
thickness here is 5

Top Tip
Experiment
with small
batches

Image
transformations
can be slow, so
experiment with
test batches
before running a
command on a
big batch.

TUTORIAL

ArtEvolver: batch-convert images with ImageMagick46 magpi.cc

convert –channel blue -negate image_file.jpg
new_image_file.jpg

Posterize reduces the number of colours in the
image. Use a value of 2 for an 8-colour palette, 3
for 27 colours, and 4 for 64:

convert -posterize 2 image_file.jpg new_
image_file.jpg

10 Add visual effects
There are a number of special effects you

can apply to images, including -emboss, -charcoal,
-edge, -paint, and -spread. Experiment with them
to transform photographs creatively. Spread gives
you a frosted glass effect. The value for charcoal is
a line thickness. Start here:

convert -emboss 2 image_file.jpg new_image_
file.jpg

11 Distort images
The -wave effect adds ripples to your image.

You give it the height of the wave (amplitude) and
the distance between two waves (wavelength),
like this:

convert -wave 5x20 image_file.jpg new_image_
file.jpg

You can also use the implode effect to collapse an
image, like this:

convert -implode 1 image_file.jpg new_image_
file.jpg

Use a negative number for the implode value to
explode the image instead.

12 Combine effects
You can combine multiple transformations

in one command. They’re carried out in the order
you list them. Here’s an example that resizes,
mirrors, and negates an image in a single command:

convert -resize 1024x768^ -flop -negate

image_file.jpg new_image_file.jpg

Using ImageMagick enables you to batch-convert
images into a range of different styles. In the next
ArtEvolver tutorial, we will collate these into a
physical project that uses these transformations.

	 �The edge effect
creates striking
results like this

#!/bin/bash
Rotates portrait images (only) in the current folder
From ArtEvolver Tutorial in The MagPi - by Sean McManus

mkdir original_images

Remove any extensions in the list below that you're not
using to avoid error messages
for image_file in *.jpg *.JPG *.png *.PNG;
do
Make sure there is no space around the = below
 width=$(identify -format "%w" $image_file)
 height=$(identify -format "%h" $image_file)
 if test $height -gt $width
 then
 echo "$image_file is portrait shape [$width x
$height]. Rotating..."
 new_name="rotated-${image_file}"
 convert -rotate 90 "$image_file" "$new_name"
 mv $image_file original_images
 else
 echo "$image_file is landscape already [$width x
$height]."
 fi
done

landscapify.sh

001.
002.
003.
004.
005.
006.
007.

008.
009.
010.
011.
012.
013.
014.
015.

016.
017.
018.
019.
020.

021.
022.

> Language: Bash magpi.cc/artevolver

DOWNLOAD
THE FULL CODE:

TUTORIAL

ArtEvolver: batch-convert images with ImageMagick 47magpi.cc

Transform Raspberry Pi into an abstract artist, with

ArtEvolver. It blends images together to create surprising,

stunning, and surreal artworks that constantly change

S
ay goodbye to boring old posters, and

hello to ArtEvolver. Every time you look

at this digital art, it’s different. Fill it with
patterns, paintings, and textures. Add photos of
street art, structures, and neon lights. Personalise
it with your children’s drawings or monochrome
shots of your favourite places. While you can view
this on the desktop, it looks most impressive on
a small screen in a picture frame. The program,
based on Pygame, constantly cycles through your
images and includes a safe shutdown function. To
get started quickly, you can download the code at
magpi.cc/artevolver.

01 Prepare your images folder
The art starts here! Store your images

in a folder called images_folder. Ideally, the
images should be resized and cropped to fit your
screen size (1024×768 in my case). Last issue, we

Sean
McManus

Author of Mission

Python, Scratch

Programming in

Easy Steps, and

Raspberry Pi For

Dummies (with

Mike Cook). Get

free chapters at

Sean’s website.

sean.co.uk

W
R

IT
E

R

ArtEvolver:
Build an abstract
art installation

You’ll Need

> Raspberry Pi OS

> Pimoroni HDMI
8-inch IPS LCD
Screen Kit
magpi.cc/8inlcd

> Picture frame
(optional)

> Prepared images
(see The MagPi 118)
magpi.cc/118

P
a

rt
 0

2

showed you how to do this with ImageMagick.
It’s OK to include smaller (e.g., square) or larger
images, and ArtEvolver will scale them. Remove
any work-in-progress images from the folder,
including the original_images folder if you used
my landscapify.sh script from last issue. Feel free
to organise your images in subfolders.

02 Displaying the images
ArtEvolver uses Pygame to display the

images. The display_prototype.py listing shows
the simple demo created to test how the images
would look, layered on top of each other. It loads
three images, sets their opacity (alpha values), and
then uses windowSurface.blit() to add them to

the screen buffer. That function takes the image
object and the position co-ordinates. Finally,
pygame.display.update() refreshes the display and
makes the changes visible. Change the file names
in the images list to your own.

03 Building the pictures list
To make this work well, it needs to be

able to handle hundreds of images without you
needing to add them in the code. Take a look
at ArtEvolver.py. The index_images() function
discovers the images in the images_folder for you,
and puts their file names (including paths) into the
pictures list. The function is recursive. You call it
with the name of the directory you want to index.
When the function finds a subdirectory (using

 This IKEA Ribba
picture frame is the
right size for the
screen, and deep
enough to contain
your Raspberry Pi

TUTORIAL

ArtEvolver: Build an abstract art installation58 magpi.cc

os.path.isdir), it calls itself to index that directory
too. This code only indexes .png and .jpg images,
so rename any images that have upper-case
extensions, or modify the code accordingly.

04 Understanding the data structure
The pictures list is the primary list of all

the image paths and file names. At the start of
each run, it’s copied to the sequence list, which is
shuffled into a random order. Images are pulled
out of the sequence list, and cycled through
opacity values from 0 to 150, and back to 0. Each
visible image is represented by a Slide object,

containing its file name and current opacity. The
current_slide_list stores the five Slide objects

Top Tip

Make a digital

photo frame

You can turn this

project into a

digital photo frame.

Simply change

the starting_

opacities list

to [0] to make it
display one image

at a time.

that are currently on screen. When a slide fades
from view, its file name is replaced in the Slide

object with the next one from the sequence list.

05 Understanding opacity
Pygame is used to display the images and

overlay them on each other. The alpha (opacity)
value is changed to make the images fade in and
out. We’re using a maximum opacity of 150 to stop
one image blocking the rest out totally. At first,
we had code that either increased or decreased the
opacity depending on whether a slide was fading
in or out. We’ve simplified that by using opacity
values from -150 to +150. Now, we just add 1 each
time around the loop. Any negative values are
made positive using Python’s abs() function before
the opacity value is used. Values go from maximum
opacity (-150) to totally transparent (0) and back to
peak opacity (150). At 0, the slide’s image changes.
At 150, the opacity value is changed to -150, and
the cycle repeats.

 The alpha (opacity)

value is changed to

make the images fade

in and out

The Pimoroni 8-inch

HDMI screen is supported

in the picture frame using

LEGO and cardboard

The mouse is a simple

way to add a quit button

to ensure a safe shutdown

TUTORIAL

ArtEvolver: Build an abstract art installation 59magpi.cc

06 Setting up the slides
If all the slides start with the same opacity,

you have a single composite image that fades in
and out. It’s more interesting to have each slide
fade in and out separately, so the art is in flux. The
starting_opacities list sets the initial values for
opacity. Add or remove values in this list to change
the number of simultaneous slides. We found these
values by experimentation.

07 Scaling the images
Although it’s a good idea to resize

your image files, ArtEvolver uses the
pygame.transform.scale() function to scale
images to fit the screen. For portrait images, the
scaling factor will be the image height divided by
the window height. For example, if your image
height was 1000 pixels and the window was 500

pixels high, the scaling factor would be 2. When
the image height is set to the window height, the
image width is divided by the scaling factor so it
remains proportional. Landscape images are scaled
to fit the window horizontally, with the height
scaled proportionally. Your images don’t all have
to fill the window. Some of my most effective ones
appear in a stripe across the middle.

08 Centring the images
Images are positioned in the

middle of the window. You have to give the
windowSurface.blit() function the co-ordinate for
the top-left corner of the image. To calculate what
the x co-ordinate should be, we take the middle of
the window (the width divided by 2), and subtract
half the image width. We do something similar
for the y co-ordinate. Images that fill the window
will in any case end up positioned in the top left at
(0,0). However, this method neatly places images
that don’t fill the window.

09 Add a quit function
We wanted to add an off button to ensure

there is a safe shutdown, rather than just pulling
the plug to turn it off. You could look at adding
a HAT or wiring up your own button to the GPIO
pins. However, we decided the simplest solution
was to plug in a spare mouse. The frame is on our

#ArtEvolver prototype - layers three images

import pygame

pygame.init()

windowSurface = pygame.display.set_mode((1024, 768))

images = ["images_folder/image1.jpg",

"images_folder/image2.jpg", "images_folder/image3.jpg"]

opacities = [45, 90, 135]

windowSurface.fill((255,255,255))
for i in range(3):

 image_to_show = pygame.image.load(images[i])

 image_to_show.set_alpha(opacities[i])

 windowSurface.blit(image_to_show, (0, 0))

pygame.display.update()

display_prototype.py

001.

002.

003.

004.

005.

006.

007.

008.

009.

010.

011.

012.

013.

014.

> Language: Python

 Here, two pieces
of street art have
been merged with
ink clouds in water
to create a textured,
colourful image

 The program centres portrait-shaped images, such as this one
of a man at a window

 We decided the simplest

solution was to plug in a

spare mouse

Top Tip

Shorter
is better

Search eBay for

the shortest USB

and HDMI cables

you can find, so
they fit more
easily into the

picture frame.

TUTORIAL

ArtEvolver: Build an abstract art installation60 magpi.cc

ArtEvolver - by Sean McManus - www.sean.co.uk

import pygame, random, os

pygame.init()

win_width = 1024

win_height = 768

windowSurface = pygame.display.set_mode((win_width,

win_height))

pygame.display.set_caption('ArtEvolver')

pygame.mouse.set_visible(False)

class Slide:

 def __init__(self, filename, opacity):
 self.filename = filename
 self.opacity = opacity

def index_images(path, images_list):

 for dir_or_file in os.listdir(path):
 path_plus_dir_or_file = os.path.join(
path, dir_or_file)
 if os.path.isdir(path_plus_dir_or_file):
 index_images(

path_plus_dir_or_file, images_list)
 elif dir_or_file.lower().endswith('.png') or
dir_or_file.lower().endswith('.jpg'):
 images_list.append(path_plus_dir_or_file)
 return images_list

pictures = index_images("images_folder", [])

while True:

 sequence = pictures.copy()

 random.shuffle(sequence)

 # Set up initial list of current slides

 current_slide_list = []

 starting_opacities = [-90, -45, 45, 90, 135]

 for layer_opacity in starting_opacities:

 this_image = sequence.pop(0)

 this_slide = Slide(this_image, layer_opacity)

 current_slide_list.append(this_slide)

 while len(sequence) > 0:

 windowSurface.fill((0,0,0)) # Black
 for this_slide in current_slide_list:

 image_to_show = this_slide.filename
 new_opacity = this_slide.opacity + 1

 if new_opacity == 150:

 new_opacity = -150

 elif new_opacity == 0:

 this_slide.filename = sequence.pop(0)
replace image in this slide

 this_slide.opacity = new_opacity

 image_to_show = pygame.image.load(

this_slide.filename)
 image_width = image_to_show.get_width()

 image_height = image_to_show.get_height()

 # Images are scaled for the long side

(fit, not fill, the window)
 if image_height > image_width:

 scaling_factor = image_height /

win_height

 new_width = int(

image_width / scaling_factor)

 image_to_show = pygame.transform.

scale(image_to_show, (new_width, win_height))

 else:

 scaling_factor = image_width /

win_width

 new_height = int(

image_height / scaling_factor)

 image_to_show = pygame.transform.

scale(image_to_show, (win_width, new_height))

 # Remove # on next line if your screen is

upside down

 #image_to_show = pygame.transform.

flip(image_to_show, True, True)

 # get new height and width

 image_width = image_to_show.get_width()

 image_height = image_to_show.get_height()

 image_to_show.set_alpha(abs(new_opacity))

 windowSurface.blit(image_to_show,

 (int(win_width/2) -

int((0.5*image_width)),

 int(win_height/2) -

int((0.5*image_height))))

 pygame.display.update() # Shows composite

after all slides have been blitted

 pygame.time.wait(30) # Adjust timings here if

necessary

 for event in pygame.event.get():

 if event.type == pygame.MOUSEBUTTONUP:

 pygame.quit()

ArtEvolver.py

001.

002.

003.

004.

005.

006.

007.

008.

009.

010.

011.

012.

013.

014.

015.

016.

017.

018.

019.

020.

021.

022.

023.

024.

025.

026.

027.

028.

029.

030.

031.

032.

033.

034.

035.

036.

037.

038.

039.

040.

041.

042.

043.

044.

045.

046.

047.

048.

049.

050.

051.

052.

053.

054.

055.

056.

057.

058.

059.

060.

061.

062.

063.

064.

065.

066.

067.

068.

069.

070.

071.

072.

073.

074.

075.

076.

077.

078.

079.

080.

081.

082.

> Language: Python magpi.cc/artevolver

DOWNLOAD
THE FULL CODE:

TUTORIAL

ArtEvolver: Build an abstract art installation 61magpi.cc

desk, so it’s easy to hide the mouse behind it. The
final lines in ArtEvolver.py use Pygame to check
for a mouse click and quit the program if one is
detected. A mouse click is the only way to close the
program window.

10 Connect the screen
You can run ArtEvolver on any screen, or

even just run it on your desktop. We’re running
it using a Pimoroni 8-inch HDMI IPS LCD Screen
Kit. The display driver board connects to the top
of the screen with a short cable, and connects to
your Raspberry Pi computer using USB and HDMI
cables. The display driver board doesn’t need any
GPIO pins.

11 Build the frame
The screen is inside an IKEA picture frame,

which looks great. The display driver board is
mounted above our Raspberry Pi board using
standoffs, and the computer is in a Pibow case
to insulate it from the screen. This arrangement
keeps everything tidy and compact. To support the
weight of the computer more easily, we mounted
the screen upside down, and used LEGO to support
the computer at the right height. There’s a line in

the code that flips the images upside down so they
look right. Delete the # at the start of that line if
your screen is also upside down.

12 Make it autostart
We’ll configure the .bashrc file to run

ArtEvolver when the computer powers up and to
shut down the machine safely when ArtEvolver
finishes. We are using a delay of three minutes,
so there’s time to cancel the shutdown (using
sudo shutdown -c) if I need to make changes, and
to make sure we don’t lock the machine. Note
that these commands will also run if you open a
Terminal window in the desktop.

Open a Terminal window and enter sudo nano
~/.bashrc. Add these two lines to the end of the
file, save with CTRL+O, and exit with CTRL+X:

python ArtEvolver.py

sudo shutdown +3

On the desktop, go into Preferences > Raspberry
Pi Configuration, and set the computer to boot to
the CLI (command-line interface). (To get back to
the desktop, you can enter startx at the command
prompt). Reboot, and enjoy your digital art!

Top Tip

Image credits

Thanks to Jon
Tyson, Parrish
Freeman, Pawel
Czerwinski, Sasha
Freemind, Jen
Theodore, Jr
Korpa, Birmingham
Museums Trust,
Hermann Wittekopf,
and Andrii Leonov

who provided
the images in

the ArtEvolver

composites shown
here. Find these

images, and
many more, at
unsplash.com.

 A mouse click is the only way to close the

program window

 Three monochrome
images are blended
here to make an
abstract image, with
an overlaid texture of
water on glass

 The Pimoroni 8-inch HDMI IPS LCD Screen Kit includes a display
driver board, which sits between the computer and the screen

TUTORIAL

ArtEvolver: Build an abstract art installation62 magpi.cc

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

