
70 helloworld.cc

Sean McManus explains how you can help students to find and 
fix some of the most common errors in Scratch projects

DEBUGGING IN SCRATCH

t’s a great feeling when code works 
the first time, but sometimes it’s 

even more satisfying when it doesn’t. One of 
the best learning opportunities comes when 
there’s a bug, or error, in a program, and we 
take the time to truly understand the code. 
Debugging may sometimes be frustrating, 
but it is an inevitable part of programming.

Educators can focus on guiding students, 
rather than getting bogged down in code, 
if they can identify the cause of problems 
quickly. In this article, I’m going to share 
some tips on debugging Scratch, based 
on my experience volunteering at a Code 
Club. You can use these techniques yourself, 
and perhaps share some of them with 
your students.

Reproducing the bug
When you’re helping a student who has found 
a bug, the first step is to observe the problem 
yourself so you’re not relying on a second-
hand report to understand it. In the classroom, 
I would usually pull up a chair beside the 
student and then invite them to show me what 
they did last time, using the same inputs. I 
would ask them to talk me through it, including 
what was surprising about the program’s 
behaviour, so that I could understand what 
they thought the problem was.

When working remotely, you could 
ask students to send you a copy of the 
project, together with instructions on how 
to reproduce the error, or a video capture 
showing the bug in action. You should 

I

FEATURE

also ask them to explain what they think 
the code should be doing, and how that’s 
different from what it is doing.

Sometimes there might not be anything 
wrong with the code. Students might be 
expecting the script to do something that it’s 
not designed to do, or the code might have 
missing bits that still need adding from the 
worksheet. When building their own projects, 
students might need to rethink the right 
instructions to use to get the result they want. 
These reported errors aren’t what I would 
really consider to be bugs, and they can be 
clarified without any testing or tinkering.

If there is an error, seeing it in action now 
means you can see the difference when it’s 
fixed later. It’s hard to be sure a bug has been 
fixed if you don’t run the code before and after.

Diagnosing the bug
The next step is to diagnose the problem. 
Scratch is a highly visual language, so you 
can often see what’s happening just by 
looking at the stage. Sometimes, you might 
need to get an insight into what’s going on 
inside the project’s scripts, or might need 
to understand what happens at a particular 
point in the program flow. There are lots of 
different ways you can do this.

For example, you can click a variable’s 
block in the block palette to see its current 
value. This doesn’t just work for variables: you 
can use it for x position, y position, direction, 
costume number or name, backdrop number 

n ��Scratch gives you several ways to see what’s going on inside your program, such as using the pen to show where a sprite goes 
and using say blocks to display the program status n ��The say block shows the value of a variable

http://helloworld.cc/


helloworld.cc 71

or name, size, volume, loudness, and the 
pointed sensing blocks (such as touching 
color). The sprite list also shows a sprite’s 
position, direction, size, and visibility.

Variables and some of the blocks have 
tick-boxes beside them in the block palette 
that show their values on the stage. These 
readouts update as the project runs.

You can also use the say block to show 
the value of a variable at a particular point in 
the program’s execution. This will not update, 
and will stay visible until you next run the say 
block on that sprite, or click the green flag.

You can create a simple script to report 
when a sprite is touching another sprite, or 
any other condition you want to check for. The 
script above makes a sprite say whether it’s 
touching another sprite. When it is, the speech 
bubble text changes from ‘false’ to ‘true’.

The pen can be used to leave a trail of a 
sprite’s movements, and sound effects can 
be added to indicate when a script starts or 
reaches a particular point.

To make it easier to find where the bug 
is, you can break projects down into smaller 
parts for testing. Instead of clicking the green 
flag to start a project running, you can click 
one script in the code area to start it by itself. 
If you have loops inside loops, you can drag 
the inner loop out and click it to test it. To see 
what the script does up to a particular point, 
you can add a stop this script block, or use a 
wait one seconds block to pause it. You can 
also add a wait block inside a loop, such as a 
movement loop, to slow it down so that you 
can more easily see what it’s doing.

With these techniques, there could be 
side effects. The timings in the project 
might be thrown out, for example. If you 
test individual parts of the script, they might 
not work without other parts. Nonetheless, 

breaking the program down like this often 
helps to isolate where the error is by quickly 
confirming which bits are working fine.

Fixing the most common bugs
Over time, I found that the same bugs were 
coming up repeatedly in my Code Club, and 
it became easier for me to identify what 
was wrong. I was able to steer students 
away from some of the pitfalls by leading 
a group discussion about the potential 
problem before they built the scripts. In the 
rest of this article, I’m going to share the 
most common bugs I saw. 

Variable creation
The first concerns variables. A Scratch 
variable can be created for all sprites (so they 
can all use its value) or created just for one 
sprite (so only one sprite can use its value). 
It’s a really useful feature when you’re cloning 
sprites, because if you create a variable for 
one sprite only, each clone of that sprite has 
its own separate version of the variable. For 
example, you can create an alien that stores 
how many lives it has left in a variable created 
for that sprite only. Each clone of the alien will 
behave in the same way, with its own record 
of its own lives left. 

SOME OF THE BEST LEARNING 
OPPORTUNITIES ARISE WHEN THERE’S 
A BUG IN A PROGRAM

“

Students can sometimes fix the bug without learning anything. They might spot the difference between 
what they’ve got on-screen and what’s in the worksheet, or just tinker until it works. Discussing bugs with 
the affected students, or with the whole group, helps to ensure that the cause of the error is understood. 
Students can also be encouraged to code mindfully, thinking about what the script does as they build 
it, rather than just copying it from the sheet. That helps to reduce errors, and helps them to prepare for 
making their own projects.

LEARN FROM DEBUGGING

Im
ag

e: 
Sc

ra
tc

h F
ou

nd
at

ion

n ��A block that makes it say whether a sprite is touching another sprite

http://helloworld.cc/


helloworld.cc72

You can see whether a variable is for 
one sprite or all sprites by ticking the box 
beside it in the block palette to show it on 
the stage. If it’s for one sprite, it’ll have the 
sprite name beside it.

When a project requires students to create 
a variable for one sprite only, this often results 
in errors. This is quite tricky to fix, because 
you can’t just change whether a variable is 
for one or all sprites. There’s an additional 
complication, too: if you delete a variable you 
created in error, Scratch also deletes all the 
blocks that use it, leaving no trace of it in your 
scripts. If you’re using the variable in lots of 
blocks across lots of scripts, it can be difficult 
to put those blocks back in again.

Here’s a process for changing whether a 
variable is for one sprite or all sprites:

n �Create the variable correctly with a different 
name to the one originally used. Scratch 
won’t let you use the same name for a 
variable for all sprites and a variable for this 
sprite only.

n �Update the scripts to use the new variable. 
The program should now work.

n �Delete the variable that was originally 
created incorrectly, to avoid using it 
by mistake.

n �Now you can rename the new variable to 
the correct name, if you want it to match 
a worksheet.

Lookalike blocks
The second most common error I encountered 
was lookalike blocks, responsible for about 
a fifth of the errors in my group. This was 
a common error when copying code from 
worksheets. In particular, students mixed 
up set and change blocks; x and y blocks, 
broadcast, and broadcast and wait blocks; 
and say, and say for two seconds blocks. This 
can be hard to spot, because at a glance the 
script looks good, with the right coloured 
blocks in the right place and most of the text 
on the block correct, too.

Wrong blocks in wrong brackets
Problems often arise when students put the 
wrong blocks inside or outside the brackets 
of the blocks for repeating (repeat, repeat 
until, forever) or making decisions (if, if… 
then… else). Wherever there are brackets, 
it’s worth doing a quick check at the top 
and bottom of them to make sure the right 
blocks are inside them.

Blocks in the wrong order
Getting blocks in the wrong order can 
sometimes stop the program from working 

as expected. In particular, it’s a problem when 
variables or lists are being initialised after 
scripts have started changing their values. In 
the script at the bottom of this page, the score 
never goes above 1, because it’s being reset 
inside the forever loop, instead of outside 
of it at the start of the program. This is also 
a ‘wrong blocks in wrong bracket’ error. It’s 
easy to see the problem in this tiny script, but 
it can be harder to spot in longer scripts, or in 
projects that have multiple scripts.

Rogue spaces
When you’re comparing pieces of text, 
rogue spaces can cause unexpected results. 
In the script opposite, it looks like these two 
pieces of text (‘hello’) are the same. They’re 
not, because the one on the left has an 
extra space, so the sprite says ‘No match!’ 
In a real project, you’d probably have an 
answer block or a variable in place of one 
of these hellos, which would make it even 
harder to spot the problem.

Scripts on the wrong sprite
When using worksheets, some students in my 
Code Club used to skip straight to the code 
without reading the instructions fully. That 
sometimes resulted in them putting scripts on 
the wrong sprite. Students can copy the script 
to the correct sprite by dragging it onto that 
sprite’s icon in the sprite list. They will often 
forget to delete the script on the wrong sprite, 
though, so you need to watch out for this.

n ��Debugging can be thought of as a four-stage process, from reproducing the fault through to learning from it

FEATURE

Im
ag

e: 
Sc

ra
tc

h F
ou

nd
at

ion

n ��‘A wrong blocks in wrong bracket’ error

http://helloworld.cc/


helloworld.cc 73

Duplicate scripts
Duplicate scripts arise when students forget to 
delete a script they originally put on the wrong 
sprite, or when they are following a worksheet 
and create a new script instead of adding 
blocks to an existing script.

If the project runs really fast, that might 
be because there are two movement scripts 
running at the same time.

Students might call your attention to the 
new script they’ve made, which is perfect, and 
you might not immediately notice thatthere’s 
an old script that does nearly the same thing 
on the sprite. You can drag a duplicate script 
into the block palette to delete it.

Not changing default numbers
It’s easy to overlook that the number in a 
repeat 10 block needs to be changed to 
100 when copying scripts from a worksheet. 
Similarly, students sometimes forget to change 
the default values in operator, motion, and 
other blocks.

‘It worked a minute ago’ errors
Sometimes a program runs fine the first time, 
but behaves strangely after that. These errors 
often result because the project doesn’t reset 
to a known state when it runs. For example, 
a new game might begin with a main sprite 

hidden, or the score might be set at 100 
because that’s how the last game ended. 
This is a common error when students create 
their own projects. It can be fixed by setting 
the visibility, position, costumes, backdrop, 
variable values, and any other significant 
values at the start of the project.

Synchronisation and timing issues
Using multiple scripts in Scratch can help 
to keep code readable, but it can lead to 
synchronisation and timing issues when 
different scripts are running at the same time. 

Simplification is the key, and reducing the 
number of green flag scripts often helps. The 

broadcast and wait block can be used to 
trigger scripts that should finish before the 
program proceeds. If the scripts sending 
and receiving the broadcast are on the same 
sprite, you can make your own blocks instead.

Some of these errors may seem fairly 
basic to experienced Scratch users, but they 
can be frustrating to newcomers, and 
consume a disproportionate amount of 
energy. Over time, it gets easier for students 
to avoid, find, and fix bugs like these, but 
they can still crop up. I hope that this article 
provides a handy checklist so educators can 
help students more effectively. 

This is the kind of workflow a professional 
programmer might use if they’re alerted to an 
error in a program by a user: 
n �Reproduce the error so they can see it 

for themselves
n �Diagnose what’s causing it, using a mixture 

of testing and logical thinking
n �Fix the problem by updating the code
n �Learn from it, to prevent it happening again
There might be loops in the process, because 
fixing one error might cause or reveal another.

A DEBUGGING 
WORKFLOW

SEAN MCMANUS
Sean McManus is a copywriter and 
author specialising in technology. His 
books include the new 2nd edition of 
Scratch Programming in Easy Steps, 
Cool Scratch Projects in Easy Steps, and 
Mission Python. He posts his Scratch 
resources at sean.co.uk/scratch 
(@musicandwords).

STUDENTS SHOULD BE ENCOURAGED TO 
CODE MINDFULLY, THINKING ABOUT WHAT 
THE SCRIPT DOES AS THEY BUILD IT

“

Im
ag

e: 
Sc

ra
tc

h F
ou

nd
at

ion

n ��Rogue spaces can cause unexpected results

http://twitter.com/musicandwords/
http://helloworld.cc/

	001_HW13_COVER_v3b_SWP_LR_JG_SWP_DE
	002_HW#13_Advert
	003_HW#13_Welcome_SWP-DM_SWP_LR_JG_SWP_LA_SWP
	004-005_HW13_Contents_AOM_LR_JG_AOM_JG_SWP_SR_SWP
	006_News_Penketh_Lockdown_AOM_JG_LR_SWP_SWP
	007_News_Temple_AOM_JG_LR_SWP_SWP_SR_SWP
	008-009_HW#13_NEWS.AOM_AOM_SR_SWP_LR_JG_AOM_JG_SWP
	010-011_News_Temple_PPE_SWP_LR_JG_SWP_AOM_LA_SWP_SWP
	012-014_HW#13_NEWS-DM_SWP_SR_SWP_JG_LR_AOM_JG_AOM_SWP_SWP
	015_News_Gouskos_Coolest_Projects_SWP_JG_LR_AOM
	016-017_HW#13_Opinion_JG_SWP_LR_SWP_JG_LA
	018-019_Interview_SWP_LR_JG_SWP_LA_SWP
	20-21 Insights Dickins_SWP-DM_SWP_JG_LR_JG_SWP
	022-023_HW#13_INSIGHTS_SWP_DM_SWP_LR_JG_SWP_JG_SWP_SWP
	024-035_HW#13_CoverFeature_v2_SWP_JG_LR_SWP_LA_SWP_LA_SWP_LA_SWP_SWP_SR_SWP
	036-037_HW13_Subs_SWP
	038_Opinion_Sentance_Future_of_Education_SWP_JG_SWP_SWP
	039-041_Feature_OMeara_Resources_SWP_DM_AOM-DM_SWP_JG_LR_SWP_SWP
	042-043_Feature_Rickus_Wellbeing_SWP_LR_JG_LR_SWP_JG_SWP
	044-045_Feature_Philbin_Safeguarding_SWP_LR_JG_SWP_SWP_SWP
	046-047_HW#13_Feature_Bowley_AOM_HK_AOM_JG_LR_AOM_JG_HK_SWP_DM_AOM_JG
	048-050_Feature_Grantham_Screen_time_SWP_DM_SWP_JG_LR_SWP_JG
	051-053_Feature_Sentance_NCCE_SWP_DM_SWP_JG_LR_SWP_SWP
	054-056_HW#13_Feature_Rawlinson_LR_SWP_LR_SWP_JG_AOM_SR_SWP_LA_AOM_LA_SWP_LA_SWP
	057-059_Feature_Critten_Comp_thinking_SWP-DM_AOM_JG_LR_SWP_SR_SWP_LA_SWP
	060-061_Seegerer_Smerge_AOM_DM_AOM_JG_LR_SWP_SWP
	062-063_Feature_Temple_ALevel_SWP_JG_LR_SWP_SWP
	064-066_Feature_Dowling_Morals_AOM_JG_LR_SWP_JG
	067-069_HW#13_Feature_Lowe_AOM_HK_AOM_LR_JG_AOM_LR_HK.indd-DM_SWP_AOM_JG_AOM
	070-073_HW#13_Feature_McManus_AOM_HK_LR_JG_SWP_SR_AOM_LR_AOM_SWP_SR_SWP_SWP_LA_SWP
	074-076_Feature_Lau_Colouring_Book_AOM_LR-DM_SWP_LR_JG_SWP
	077-079_HW#13_LessonPlan_Garside_SWP_JG_LR_SWP_SWP_LR
	080-083_HW#13_LessonPlan_Powell_SWP_LR_JG_AOM_SR_AOM_SWP
	084-085_HW#13_LessonPlan_Cossey_SWP_JG_LR_SWP_SR_SWP_SWP_SR_SWP_LR
	086-087_HW#13_LessonPlan_Gerrie_AOM_JG_LR_AOM_SWP
	088-093_HW#13_IINSIDERS_SWP_JG_LR_SWP_SWP_SR_SWP
	094_HW#13_Puzzle Page_SWP_SR_AOM_JG_LR_SWP
	095_HW12_bookreviews_LA_SWP_JG_LR_SWP_SWP
	096-097_HW#13_Questions_SWP_LR_SWP_JG_SWP_SWP
	098_099_HW#13_Get Involved_SWP
	100_HW#13_OBC



